
Abstract Data Types:
Stacks and Queues

Some structures for data are so universal that
we try to describe them in language- and
implementation-independent ways in terms of
the operations for manipulating them. These
are called Abstract Data Types or ADTs. They
predate classes and object-oriented
programming. ADTs are the original technique
for abstracting data and they are still useful
today.

In Java ADTs are usually represented as interfaces --
lists of signatures of methods that need to be
implemented for the data structure.

Stacks

Here is one ADT:

A stack is a data structure that implements the
"LIFO" protocol -- (Last In, First Out). Data is
removed from the stack in the reversal of the
order in which it is entered.

The basic stack operations are

• Push(x) -- add x to the stack.

• Pop() -- removes and returns the most recent
unpopped addition to the stack.

• Top() -- returns the top (most recent) element
on the stack without removing it from the
stack.

• isEmpty() -- returns true if the stack is empty.

Question: Let's see if you are following this. A push
operation adds to the top of the stack, a pop
operation removes the top of the stack. So if I start
with an empty stack and do the following sequence
of operations, what will be at the top of the
resulting stack?

push(2); push(3); pop(); push(4); pop();

A. 2
B. 3
C. 4
D. The stack will be empty

Answer: A push operation adds to the stack, a pop
operation removes the top of the stack. So if I start
with an empty stack and do the following sequence
of operations, what will be at the top of the resulting
stack?

push(2); push(3); pop(); push(4); pop();

Answer:
A. 2

Note that in the standard stack protocol the only
item visible is the top element of the stack.

Stacks are used everywhere

• Almost all processors have a stack to support
function calls

• Web browsers use stacks. That is what enables
you to go back to previously-visited pages.

• Any system that has undo commands makes
use of stacks

• There are many, many other applications

Here is a Java interface for a Stack ADT:

public interface StackADT<E> {
void push(E item);
E pop() throws NoSuchElementException;
E top() throws NoSuchElementException
int size();
boolean isEmpty();
void clear();

}

Here is a picture for a linked structure that implements
stacks:

data

data

data

data

top

bottom

How would you initialize or construct a Stack? How
would you write Push(), Pop(), Top() and IsEmpty()??

Queues

Here is another ADT -- a Queue. Queues
implement the FIFO protocol -- First In, First Out.

The word "queue" comes from French, where it
means "tail". During the French Revolution
people were forced to wait in many long lines,
and these lines became known as "queues".
The word passed into English in the mid 19th
Century as a reference to a line of people
waiting for something.

The Queue ADT works like a line of people
waiting for a teller in a bank. A person joins the
Queue at the end, and exits from the Queue at
the front.

The Queue ADT operations are

Enqueue(x) -- adds x to the end of the queue

Dequeue() -- removes the item at the front of
the queue

Front() -- returns the item at the front of the
queue

IsEmpty() -- returns true if the queue is empty.

Question: An enqueue operation adds to the end of
the queue and a dequeuer removes from the front. So
if I start with an empty queue and do the following
sequence of operations, what will be at the front of
the resulting queue?

enqueue(2); enqueue(3); dequeue();
enqueue(4); dequeue();

A. 2
B. 3
C. 4
D. The queue will be empty

An enqueue operation adds to the end of the queue
and a dequeue removes from the front. So if I start
with an empty queue and do the following sequence
of operations, what will be at the front of the
resulting queue?

enqueue(2); enqueue(3); dequeue();
enqueue(4); dequeue();

Answer:
C. 4

As with stacks, there are lots of practical
applications of queues.

• The operating system has a scheduler that
keeps a queue of processes waiting for
resources.

• Printers keep a queue of jobs waiting to print.

• Graphics cards keep a buffer queue that holds
all of the drawing commands that have been
issued but not yet executed.

Why do you think these operations use queues
instead of stacks?

Here is a Java interface for the Queue ADT:

public interface QueueADT<E>
void enqueue(E item);
E dequeue() throws NoSuchElementException;
E front() throws NoSuchElementException;
int size();
boolean isEmpty();
void clear();

}

In Lab 3 we will use ArrayLists as an underlying
structure to create a MyStack class that
implements the Stack interface.

How will that work for Stacks? What will Push(x)
correspond to? What about Pop()?

Here is a picture of a linked Queue structure:

data data data
head tail

How would you construct an empty Queue,
and write Enqueue(), Dequeue(), Front()
and IsEmpty() to go with this picture?

